Efficient Algorithms for Solution of Regularized Total Least Squares
نویسندگان
چکیده
Error-contaminated systems Ax ≈ b, for which A is ill-conditioned, are considered. Such systems may be solved using Tikhonov-like regularized total least squares (RTLS) methods. Golub, Hansen, and O’Leary [SIAM J. Matrix Anal. Appl., 21 (1999), pp. 185–194] presented a parameter-dependent direct algorithm for the solution of the augmented Lagrange formulation for the RTLS problem, and Sima, Van Huffel, and Golub [Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers, Tech. Report SCCM-03-03, SCCM, Stanford University, Stanford, CA, 2003] have introduced a technique for solution based on a quadratic eigenvalue problem, RTLSQEP. Guo and Renaut [A regularized total least squares algorithm, in Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications, S. Van Huffel and P. Lemmerling, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002, pp. 57–66] derived an eigenproblem for the RTLS which can be solved using the iterative inverse power method. Here we present an alternative derivation of the eigenproblem for constrained TLS through the augmented Lagrangian for the constrained normalized residual. This extends the analysis of the eigenproblem and leads to derivation of more efficient algorithms compared to the original formulation. Additional algorithms based on bisection search and a standard L-curve approach are presented. These algorithms vary with respect to the parameters that need to be prescribed. Numerical and convergence results supporting the different versions and contrasting with RTLSQEP are presented.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملSafe Subspace Screening for Nuclear Norm Regularized Least Squares Problems
Nuclear norm regularization has been shown very promising for pursing a low rank matrix solution in various machine learning problems. Many efforts have been devoted to develop efficient algorithms for solving the optimization problem in nuclear norm regularization. Solving it for large-scale matrix variables, however, is still a challenging task since the complexity grows fast with the size of...
متن کاملSolving Regularized Total Least Squares Problems Based on Eigenproblems
The total least squares (TLS) method is a successful approach for linear problems if both the system matrix and the right hand side are contaminated by some noise. For ill-posed TLS problems regularization is necessary to stabilize the computed solution. In this paper we summarize two iterative methods which are based on a sequence of eigenproblems. The focus is on efficient implementation with...
متن کاملApplications of regularized least squares to pattern classification
We survey a number of recent results concerning the behaviour of algorithms for learning classifiers based on the solution of a regularized least-squares problem. c © 2007 Elsevier B.V. All rights reserved.
متن کاملEfficient AUC Maximization with Regularized Least-Squares
Area under the receiver operating characteristics curve (AUC) is a popular measure for evaluating the quality of binary classifiers, and intuitively, machine learning algorithms that maximize an approximation of AUC should have a good AUC performance when classifying new examples. However, designing such algorithms in the framework of kernel methods has proven to be challenging. In this paper, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 26 شماره
صفحات -
تاریخ انتشار 2004